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Over the past decade, the rapid growth of the tech industry has led to greater demand for 

computer science literacy in the general population [1]. As a result, computer science (CS) is 

increasingly a part of K-12 education [1], [2]. However, the research on implementing CS in the 

K-12 curriculum remains sparse. Furthermore, as CS has migrated from elective to core 

curriculum, students with disabilities have often been left out of the classroom entirely [2], [3]. 

According to the most recent statistics available (from the 2018-2019 school year), 14% of students 

in the U.S. receive special education services under IDEA (the Individuals with Disabilities 

Education Act) [4]. Assuming we don’t wish to exclude these 7.1 million students [4] from such a 

vital subject, it’s imperative that we actively pursue pedagogy that will make a place for students 

with disabilities in the computer science classroom. 

This paper aims to take a methodical approach to this issue, examining the cognitive 

demands of computational thinking (a core component of CS; see section 2 below) in order to 

extract and distill concrete instructional strategies for teaching students with learning differences, 

so that these principles can be applied to a variety of learners in a variety of contexts. Though 

assistive technology is also vital for students with disabilities, it is beyond the scope of this paper. 

For the purposes of this paper, “learning differences” will include students with learning 

disabilities, mild intellectual disabilities, speech/language impairments, and/or ADHD. This 



Wald 2 

follows Gage et al. [5], who found no significant differences in measures of cognitive performance 

among these categories of learners. However, the instructional strategies put forth in this paper 

should not be considered exclusively for students with disabilities; per universal design for 

learning, they are approaches that seek to make learning more accessible to all students.  

Section 1 reviews existing research about teaching computer science to students with 

disabilities. Section 2 discusses computer science and computational thinking, explaining why 

abstraction is a suitable proxy for both. Section 3 delves into an exploration of the cognitive 

processes involved in abstraction and their connections to learning differences. Section 4 lays out 

instructional strategies to address the challenges associated with these cognitive processes. Finally, 

section 5 concludes the paper with a consideration of future directions for research in this area. 

Appendix A summarizes the instructional strategies in condensed form, and Appendix B offers an 

example lesson plan following the principles in this paper. 

 

1. Left Out of the Classroom—And the Research 

Many researchers (e.g., [2], [6], [7]) have noted the dearth of educational research that 

addresses teaching CS to students with disabilities. These researchers and others (e.g., [1], [3], [8]) 

have begun to fill the gap. However, the research often focuses narrowly on a case study of a 

specific curriculum with specific students, making it difficult to draw broadly applicable 

conclusions. Furthermore, several researchers utilize a deficit framework that treats students with 

disabilities as problems to be solved or fixed, or consider the accommodation of disabilities as an 

afterthought.  

For example, Bouck & Yadav [3] state that “students with disabilities are left out” of CT 

and CS, but their suggested approach for inclusion suggests that teachers go through five steps of 
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designing an instructional activity before, only in the sixth and final step, considering 

“accommodations or assistive technology” for students with disabilities. This intentionally last-

minute, narrow-sighted modification of lesson plans simultaneously reflects and reinforces an 

implicit belief that the instructional needs of students with disabilities are extraneous and 

excessive, and likely to take away from the instructional needs of students without disabilities. In 

contrast, Israel et al. [1], Hansen et al. [2], and Outlier Research [9] emphasize principles such as 

universal design for learning, differentiated instruction, culturally responsive pedagogy, and other 

proactive strategies for making CS curriculum more inviting and responsive to all learners, 

including students with disabilities. 

CS education researcher Maya Israel is a strong advocate for the inclusion of students with 

disabilities in CS. Israel succinctly states the goal of much of her research and of this paper: “If 

we can anticipate learning barriers in CS education and then proactively build in […] pedagogical 

approaches to address those barriers, students can experience success alongside their peers” [10]. 

In order to anticipate these learning barriers, we must first examine what computer science 

education is all about. 

 

2. Computer Science, Computational Thinking, and Abstraction 

When teachers and researchers seek to make CS accessible to all students, the first hurdle 

is that computer science itself is not always a well-delineated subject. Some seem to perceive CS 

as synonymous with coding alone (e.g., [2]), while others define it much more broadly as 

everything from what a motherboard is to the ethical implications of computers in society (e.g., 

[11]). Clearly, the concepts and cognitive abilities associated with building a computer from parts 

are as different from those involved in analyzing the impact of AI as physics is from philosophy. 
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As such, it’s difficult to define an essential set of instructional strategies for computer science as a 

whole. 

Computational thinking (CT), a core component of computer science, is much more 

narrowly and consistently defined: it is a problem-solving framework whose primary conceptual 

skills are abstraction, decomposition, pattern recognition, algorithmic thinking, and debugging [3], 

[12]–[14]. Many educational researchers (e.g., [1], [3], [13]) have pointed out that the value of CT 

goes beyond CS: as a problem-solving approach that builds critical thinking skills, it can be applied 

in myriad other contexts, including mathematics, science, and everyday life. Some suggest that 

computational thinking is the essence of computer science (e.g., [14]). Though reducing CS to 

such a fine point seems extreme, this paper will focus on instruction in computational thinking—

not as the sole essence of CS, but as a foundational skill for CS and other subjects. 

In order to develop instructional strategies, it’s important to first identify learning goals 

and likely stumbling blocks. Drilling deeper into the key concepts of computational thinking, we 

can define them as follows: 

1. Abstraction – “Changing the resolution” [14] on a problem to focus on essential details 

and discard extraneous ones [3], [12], [13]. 

2. Decomposition – Breaking a complex problem into smaller, easier-to-solve parts [3]. 

3. Pattern recognition – Noticing repetition and using it to make predictions or solve 

problems more efficiently [13]. 

4. Algorithmic thinking – Developing a clearly defined, step-by-step procedure to solve a 

problem or complete a task [13]. 

5. Debugging – Testing a proposed solution, locating errors, and correcting them [3]. 
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However, according to Statter & Armoni [14], “these ideas can be viewed as manifestations 

of one fundamental idea, which in a sense is the essence of CS”: abstraction. Each of these skills 

or tasks involves focusing on certain aspects of a problem or solution while setting aside the rest 

for the moment. Decomposition can be accomplished by concentrating on one sub-portion of a 

problem and ignoring the rest; pattern recognition requires finding the correct “resolution” at 

which the pattern operates; algorithmic thinking involves considering the underlying structure of 

a task, possibly ignoring finer details; and debugging often involves searching for a needle in a 

haystack, holding onto the larger structure while focusing in on the finer details, often at the level 

of programming syntax. As such, in considering challenges and opportunities in teaching 

computational thinking, we can consider abstraction a proxy for the various sub-tasks, and appoint 

it the primary learning goal. 

 

3. Cognitive Demands of Abstraction: Challenges and Opportunities 

We’ve shifted from the broad, amorphous field of computer science to the better-delineated 

concept of computational thinking, and then further identified abstraction as the crux of 

computational thinking. This narrower and more precise context will permit a clearer examination 

of the cognitive tasks involved, and thus help identify specific instructional strategies. 

Abstraction as a computational thinking task is “a difficult concept to teach at all age 

levels” [14], and it’s understood that abstraction as a general cognitive task is often particularly 

difficult for students with learning differences [1], [15], [16]. Michal Armoni has done extensive 

research on conceptualizations of abstraction, as well as strategies and common difficulties in 

teaching it (e.g. [12], [14]). In proposing a framework for teaching abstraction, Armoni built on 
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the levels of abstraction described by Perrenet et al. [17], [18], labeling their structure the PGK 

hierarchy [12], [14]. The PGK hierarchy is summarized in Table 1: 

 Name Description Example 
LEVEL 4 
(highest level) 

Problem A “black box” object with 
its own characteristics and 
attributes. 

Finding the maximum value 
on a list. 

LEVEL 3 Object/Algorithm An algorithm, the 
complexity of which can 
be measured or calculated. 

Set first element as max, 
then compare each value to 
max and update if current 
value is larger than max. 

LEVEL 2 Program/Process An implementation of an 
algorithm in a specific 
programming language. 

Writing a Python program 
using the above algorithm. 

LEVEL 1 
(lowest level) 

Execution A specific run of a 
specific program on a 
specific computer. 

Using the Python program to 
find the largest value from 
the list [17, 9, 42, 23, 18]. 

Table 1. The PGK hierarchy as laid out by Michal Armoni [12], [17], [18]. 

Armoni [12] argues that successful computational thinking necessitates relative fluency in 

understanding and working with these various levels of abstraction. However, both educators and 

students often demonstrate poor recognition of the importance or the application of abstraction, 

and CS education experts disagree about how best to approach teaching it [14]. In fact, both 

teaching and student work, especially at the K-12 level, tend to remain stuck in the lower levels of 

abstraction, with little time spent in level 3 and only rare (if any) excursions up to level 4 [14]. Part 

of this struggle, Statter & Armoni [14] contend, stems from the fact that abstraction, being difficult 

to define, is also difficult to measure; thus, gauging the relative efficacy of different pedagogies is 

not as straightforward as it might be in, say, reading, which has well-established, evidence-based 

metrics for success. Accordingly, one of their goals was to develop a means of assessing 

abstraction abilities. Armoni laid the foundation for this by defining four essential subskills 

necessary for successful abstraction [12], as summarized in Table 2 below: 
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Skill Example 
1. Differentiating between the four levels 

of abstraction. 
Recognizing that pseudocode belongs to level 
3, but a program written in Java is level 2. 

2. Moving intentionally between the levels. Upon completing an algorithm (level 3), 
deciding it’s now appropriate to move on to 
writing the code (level 2). 

3. Deciding which level of abstraction is 
appropriate at each stage of problem 
solving. 

In debugging a specific run of a program (levels 
1-2), recognizing that an error in algorithmic 
thinking requires moving back up to level 3. 

4. Making refinements of abstraction, e.g., 
moving from a general to a more detailed 
algorithm (within level 3.) 

Rewriting an algorithm in detailed pseudocode 
(both level 3) before moving on to 
implementation (level 2). 

Table 2. Essential subskills for abstraction [12]. 

Whereas Statter & Armoni move next to developing metrics for assessing abstraction 

capabilities, for the purposes of this paper it is more important to turn to an analysis of the cognitive 

demands associated with abstraction as defined above. 

The Cattell-Horn-Carroll (CHC) theory of cognitive abilities is “the most comprehensive 

and empirically supported psychometric theory of the structure of cognitive abilities to date” [19]. 

It defines 16 “broad” cognitive abilities, with an additional 81 “narrow” cognitive abilities 

organized beneath them. This framework is often used in cognitive testing of students with learning 

differences [19], and it provides a helpful structure for identifying the cognitive skills involved in 

abstraction and computational thinking.  

Of the sixteen broad abilities, the one most essential to abstraction is Fluid Intelligence, 

which is used in processes such as “forming and recognizing concepts, perceiving relationships 

among patterns, drawing inferences, comprehending implications, problem solving, extrapolating, 

and reorganizing or transforming knowledge” [19]. These processes are a vital part of 

differentiating, using, and moving between different levels of abstraction, and thus vital to 

computational thinking. Fluid intelligence comprises three narrow abilities: induction 

(determining the underlying concept/process in a problem), sequential reasoning (starting with 
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defined rules/conditions and taking steps to find a solution), and quantitative reasoning (dealing 

with mathematical concepts) [19]. While the latter is not necessarily involved in abstraction, 

induction’s search for the fundamental characteristic of a problem is level 4 abstraction, while the 

problem-solving steps of sequential reasoning are central to algorithmic thinking (level 3). Some 

additional broad CHC cognitive abilities associated with abstraction as defined by Armoni: 

• Short-Term Memory: Particularly important for the detail work at levels 1-3. 

• Long-Term Storage and Retrieval: Sometimes called “idea production, ideational 

fluency, or associative fluency” [19], which reveal the ways this ability is important in 

the creative use of stored knowledge of concepts or structures. Includes meaningful 

memory, associational fluency, alternative solution fluency, originality/creativity, and 

ideational fluency [19], all of which relate to generating relevant ideas, responses, or 

solutions. 

• Processing Speed: Associated with “cognitive tasks [that] often require maintained 

focused attention and concentration” [19], such as programming and debugging 

(abstraction levels 1-2). 

In addition, several of the cognitive abilities, while not essential for abstraction itself, 

support the cognitive processes associated with learning and using abstraction in the computer 

science classroom: 

• Crystallized Intelligence: Helpful for receptive and expressive communication. 

Includes language development, lexical (vocabulary) knowledge, listening ability, and 

communication ability [19]. 
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• Reading/Writing: Helpful for communication as well as comprehension and production 

of algorithms and code. Includes reading decoding, reading comprehension, writing 

ability, and others [19]. 

• Decision/Reaction Time or Speed: Helpful for efficient performance on computational 

thinking tasks. Includes semantic processing speed, mental comparison speed, and 

inspection time, which are related to mental manipulation and recognition of 

differences between items [19]. 

These are the cognitive processes involved with abstraction and its context in computing 

education; what challenges might these pose to students with learning differences? 

As previously stated, this paper uses “learning differences” to mean students with learning 

disabilities (LD), mild intellectual disabilities (MID), speech/language impairments (SLI), and/or 

attention deficit-hyperactivity disorders (ADHD). Of course, despite Gage et al.’s conclusion that 

students in these disability categories have similar cognitive performance, they caution that 

“interventions and programs should be provided to students based on individual need, not 

disability category” [5; emphasis added]. Within and across disability categories, students’ 

learning styles and needs are far from monolithic. However, it can be helpful to “consider the 

basic, psychological processes underlying the disorders and subdisorders” [7] when developing 

instructional strategies. Table 3, below, identifies common challenges associated with each of the 

seven broad cognitive abilities discussed above. 

This paper takes an anti-deficit framework regarding students with disabilities. Rather than 

seeing a student with disabilities as “lacking inherent skills and attributes that are necessary for 

success,” disability is recognized as a “mismatch between personal competency and environmental 

demands” [6]. Identifying cognitive challenges experienced by students with learning differences 
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should not be taken as an attempt to point out what these students cannot do, but rather as an 

attempt to point out the cognitive demands placed on them that may be incompatible with their 

skills and capabilities. This in turn allows for an examination of those cognitive demands: What 

supports can be put in place to give students a better chance of success? 

 

CHC Cognitive Ability Specific Learning 
Differences 

Challenges 

Fluid Intelligence Dyscalculia, nonverbal 
learning disorders, MID 

Sequencing, cause and effect, pattern 
recognition, formal logic, understanding 
and using algorithmic structures, 
complex reasoning, problem-solving, 
big-picture thinking 

Short-Term Memory ADHD Following directions, remembering the 
order of steps in a solution, holding an 
algorithm in memory while translating it 
to code, keeping track of variables and 
functions 

Long-Term Storage and 
Retrieval 

SLI, MID, ADHD Learning new concepts and 
terminology, applying existing skills in 
the novel context of CS, applying newly 
learned concepts to problems/tasks, 
generating possible solutions, 
synthesizing multiple concepts/facts 

Processing Speed Nonverbal learning disorder, 
auditory processing disorder, 
SLI, ADHD 

Sensory perception, sustained 
focus/concentration, debugging 

Crystallized Intelligence 
(i.e., language and 
communication) 

SLI, oral expression, 
listening comprehension 

Understanding tasks or instructions, 
communicating with classmates, 
expressing confusion or asking for help, 
formulating an algorithm or explanation, 
learning technical vocabulary 

Reading/Writing Dyslexia, dysgraphia, 
reading comprehension, SLI 

Understanding written information or 
instructions, notetaking, comprehending 
and writing code, interpreting error 
messages 

Decision/Reaction Time 
and Speed 

Nonverbal learning 
disorders, MID 

Comprehending code, debugging 

Table 3. The seven broad cognitive abilities associated with abstraction in CS, examples of 
learning differences associated with those abilities, and the challenges they are likely to pose [15], 
[16], [19], [20]. 
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In addition to the CHC cognitive abilities, students with learning differences are also likely 

to struggle with Executive Functioning tasks: decision making, planning and organizing, task 

initiation and completion, self-monitoring, coping with difficulty or frustration, and metacognition 

(awareness of their own thought processes) [7], [15]. 

These seven CHC cognitive abilities plus executive functioning encompass the vast 

majority of cognitive processes associated with computational thinking in general and abstraction 

in particular. By considering instructional strategies that address common difficulties in these 

cognitive skills encountered by students with learning differences, we can “minimize the mismatch 

between the demands of school and the child’s personal competence” [6] and give these students 

a chance to succeed in computer science. 

 

4. Theory to Action: Instructional Strategies 

The instructional strategies that follow are rooted in the assumption that “all students are 

capable of excelling academically” [2]. If students with learning differences are adequately 

supported by the curriculum and pedagogy, they will have a chance to nurture their talents and 

abilities. It’s important to note that the relative newness of computer science in the K-12 setting 

means that pedagogies for these age groups, disabled and non-disabled, are still under 

development, and pedagogical “best practices” have yet to be empirically established. As such, 

when students have trouble with computational thinking, it may be “due to yet-to-be-developed 

pedagogical practices or to support needs specific to their disability” [6]. To some extent, this 

distinction is unimportant: universal design for learning tells us that we can find practices that “are 

essential for some students, beneficial to others, and not detrimental to any” [2]—if a pedagogy is 

helpful to some and doesn’t get in the way of others’ learning, it can be considered a good practice, 
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whatever student population it’s targeted at. The following instructional strategies are focused on 

the cognitive abilities they can facilitate. While students with learning differences may be more 

likely to have more cognitive impairments to a greater degree than their peers, all students have 

cognitive strengths and weaknesses that can be scaffolded by the appropriate pedagogical 

approaches. 

For practical purposes, I have organized the seven CHC abilities plus executive functioning 

into four categories with regards to instructional strategies and supports. Section 4.1 addresses 

memory supports for both short-term and long-term memory. Section 4.2 covers communication 

supports related to crystallized intelligence and reading/writing abilities. Section 4.3 combines 

strategies for executive functioning and processing skills, including decision/reaction time and 

processing speed. Finally, section 4.4 digs into the teaching of fluid intelligence, where the core 

processes of abstraction take place. 

Some of these instructional strategies are common general education or special education 

practices; some fall under or are offshoots of universal design for learning (UDL) principles; some 

are derived from CS pedagogical practices; some are novel, or synthesized from multiple sources. 

All seek to address the specific cognitive challenges associated with computational thinking and 

abstraction. Framing instructional approaches in relation to the cognitive tasks and disabilities they 

address allows for a more strategic process of choosing and using these strategies. 

 

4.1  Memory supports 

Memory supports can address difficulty with short-term or long-term memory. For 

vocabulary and technical language, it can be helpful to clearly define new vocabulary, keep a class 

glossary that is accessible to students at all times, and regularly review terminology to ensure that 
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students understand and remember important terms [1], [7]. Keep technical vocabulary to a 

minimum, but be precise, and use vocabulary frequently and consistently to help students 

recognize meanings in context [1]. When teaching new information, list or highlight key points to 

help students recognize what is most important to remember [9]—color-coding can serve as an 

additional memory boost. 

Maintaining a reference sheet of code/syntax for general use, and encouraging students to 

make a list to keep track of the variables and functions in each of their programs, can help students 

who struggle to remember details of code [9]. Anchor charts, posters offering key information in 

textual and/or visual form, are an additional resource to help students remember important terms, 

syntax, procedures, or strategies [2]. Glossaries, reference sheets, and anchor charts are a great 

way to offer students reminders without them needing to ask for help, which helps students 

maintain autonomy and avoid learned helplessness (as well as freeing up the teacher to focus on 

more complex needs) [1], [6], [15]. 

It’s also helpful to review important information, including re-teaching as needed [1], [2]. 

This can be as simple as a quick full-class discussion of terminology or key points at the start of 

class. Sometimes re-teaching is a whole-class activity, whereas at other times only a small group 

needs this extra support [2]. 

Offering reminders, references, and reviews in a variety of formats (per UDL) as discussed 

above will help ensure that all learners are able to access the information they need in order to 

engage in class activities. 
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4.2  Communication supports 

Communication challenges are often divided into receptive (incoming) and expressive 

(outgoing) categories; they can also be categorized by what format—written, spoken, visual, etc.—

poses difficulty [15], [19]. Addressing students’ communication needs can often be accomplished 

via UDL, by providing information in multiple formats as well as giving students multiple means 

of expressing themselves [1], [2], [6], [7]. However, the complexity of computational thinking 

often creates additional communication barriers for students. The strategies mentioned above for 

helping with vocabulary are relevant here, and developing class notes or handouts can provide 

support for students who struggle with notetaking [9].  

It can also be helpful to provide students with frameworks for interpreting incoming 

information or scripts for communicating with others. For example, interpreting error messages is 

a notoriously challenging task for novice programmers [21], and is even more difficult for students 

with reading or receptive language disabilities. Providing a diagram with the “anatomy” of an error 

message, as well as step-by-step instructions for interpretation, would help students develop the 

ability to decode error messages independently. 

Israel et al. [1] share a framework for asking for help developed to facilitate peer 

collaboration. This series of questions can also be used to ask teachers for help: “What are you 

trying to do? What have you tried already? What else do you think you can try? What would 

happen if…?” [22]. An anchor chart bearing this framework can remind students of the script when 

they need it. Additional scripting tools can be developed as the need arises. This can also be done 

more informally by “provid[ing] students with prompts and cues” if they are having trouble 

communicating [3]. 
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4.3  Processing & executive function supports 

Supporting students who struggle with processing speed or executive function starts as 

simple as giving them “more time to process and respond to information” [23]. Allowing for extra 

time requires planning ahead for how to keep students who work more quickly engaged; offering 

a bonus exercise or free exploration time can help accommodate differential pacing [2]. These 

students may also struggle with self-pacing, so monitoring student progress or providing 

checkpoints during less-structured time can help keep everyone on track [1]. For example, teachers 

can ask students to come have their algorithm looked over and okayed before they begin coding. 

Students with executive functioning or processing difficulties can also be supported by the 

use of physical, tactile components to a lesson. Manipulatives and other forms of kinesthetic 

learning can help students with executive dysfunction engage more fully [24], and they can allow 

students who have visual or auditory processing difficulties take in information kinesthetically, 

which is the earliest and most intuitive way of interacting with the world [25]. “Unplugged” 

activities are popular for teaching computational thinking to younger students, and offer a 

kinesthetic experience that can support students with learning differences [1], [14]. However, 

research suggests that unplugged exercises can miss the mark and fail to teach students the core 

principles of computational thinking unless explicit connections are made to the intended concepts 

[26], [27]. 

The cognitive effort of maintaining focus or processing stimuli can be exhausting or 

overwhelming for students with impairments in processing or executive function; allowing 

students to take voluntary breaks and having a dedicated quiet corner in the classroom gives them 

a chance to rest and recover [6], [23]. These can also help students who struggle to manage 

frustration when faced with a difficult task. 



Wald 16 

Anticipating and scaffolding particularly difficult tasks helps to avoid such frustration and 

overwhelm in the first place; the scripts and frameworks suggested in the previous section also 

apply here. Planning, organizing, and decision making can pose particular difficulty for those who 

struggle with executive function. Examples, templates, or outlines for writing algorithms or code 

can facilitate these processes [1], [9]. Offer a few options of topics if students have trouble making 

choices during open-ended tasks [9]. The planning process can also be supported by encouraging 

students to make sense of the problem and develop an algorithm or outline for their solution before 

they begin coding, in effect starting at levels 3 and 4 of the PGK hierarchy rather than level 2 

[14]—this strategy is discussed further in section 4.4. 

Another often-frustrating task, and one that can be particularly challenging for students 

who struggle executive function or processing, is debugging. Maya Israel offers a series of 

“debugging detective questions” to help with this: “What happened when I ran my code? What did 

I want my code to do? Does any part of my code work? Do I know where the problem is in my 

code?” [8]. These questions prompt students to work on their metacognitive skills, a common weak 

point for students with executive dysfunction. Teachers can also offer students “options to try 

when [they run] into trouble” [6], such as checking that variables are spelled correctly, making 

sure all opening parentheses have matching closing parentheses, and double-checking reference 

sheets. 

It’s important to maintain a balance between structured instruction and open inquiry [8]. 

Scaffolding is crucial to supporting students with learning differences in experiencing success; 

however, instructors should “fight the urge to over-support,” which can lead to overdependence 

and learned helplessness [6]. Open inquiry gives students the opportunity to engage in productive 

struggle—an excellent antidote to learned helplessness—while deepening and broadening their 
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understanding of the material [28]. In order for students to engage in productive struggle, they 

need time to think critically about what they’re struggling with [28]. For students who tend to 

immediately ask for help when they run into problems, refrain from hand-holding and instead 

direct students to available resources or offer “purposeful questions to help students reflect on the 

source of their struggle and focus their thinking” [28]. 

 

4.4  Fluid intelligence supports 

Memory, communication, processing, and executive function are all important cognitive 

processes in computer science education. At the core of computational thinking and abstraction, 

however, is fluid intelligence. Fluid intelligence comprises the “mental operations that an 

individual uses when faced with a relatively novel task that cannot be performed automatically” 

[19]. Solving a novel computational problem using abstraction is certainly such a task. As 

previously discussed, abstraction is a notoriously tricky act of cognition, one that students of all 

ages and abilities struggle with. Armoni’s framework for teaching abstraction calls for “an explicit 

approach” [12], as if accommodating a cognitive limitation most students are known to have—

explicit instruction is a common instructional strategy in special education. 

In fact, explicit instruction is recommended by many researchers for supporting students 

with disabilities in computational thinking (e.g., [1], [9], [12], [15], [23]). Computer science 

instruction often includes considerable time spent on unstructured, open-ended problem solving, 

which is often challenging for students with learning differences; explicit instruction, in contrast, 

is “a systematic and direct approach to teaching” and “has been demonstrated as effective for 

students with learning disabilities and others who struggle with [computational thinking]” [1]. This 

includes prioritizing big ideas, setting clear goals and expectations, conducting regular reviews of 
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prior learning, modeling with step-by-step demonstrations for students, using simple language and 

providing definitions for new vocabulary, offering guided practice, closely monitoring student 

performance, and providing immediate corrective feedback on student work [1]. Several of these 

strategies have been addressed in previous sections. 

Modeling computational thinking practices for students can and should take several forms 

to provide students with multiple ways of engaging [1], [2]. Running through a “verbal think-aloud 

[of] coding and decision-making” [3] is perhaps the default form of modeling, but other options 

include watching video demonstrations or exploring and modifying sample solutions [1], or even 

physically acting out an algorithm [2]*. Students with memory or processing difficulties benefit 

from having access to notes and sample work from demonstrations [1]. Modeling offers students 

an example of how to complete a task, and repeated modeling of similar tasks can help students 

develop an abstract understanding of the process [9], [14]. Demonstrating the problem-solving 

process—while offering clear explanations of the reasoning behind and contents of each step—

helps students improve their formal logic and complex reasoning capabilities. 

Modeling can also support the learning of decomposition [7], a level-3 abstraction task that 

many students with learning differences find overwhelming. It can be helpful to draw a connection 

between decomposition and task analysis: the latter is a popular tool in special education, and is 

effectively decomposition for everyday tasks [3]. Making the connection to a familiar process can 

encourage students to engage in high-level abstraction. Another useful tool to use when 

demonstrating decomposition and algorithm design is the humble but mighty flowchart [13]. A 

flowchart can be used to lay out the parts of a problem in order: this helps bridge decomposition 

                                                        
*A favorite “unplugged” activity is having students write detailed instructions for making a common food item like a 
peanut butter-and-jelly sandwich or quesadilla, then following up with a live performance of the algorithm(s) [2]. 



Wald 19 

and algorithms, supports students who struggle with sequencing or cause-and-effect, and provides 

a visual format for understanding a complex algorithm or solution. 

According to Statter & Armoni, modeling should be done “while explicitly demonstrating 

and referring to” abstraction [14]. It is important to clearly and consistently articulate which level 

of abstraction is being used and when a move is made from one level to another [12], [14]. This 

lets students become familiar with the different levels and the roles each level has in the problem-

solving process. Using specific language to differentiate between the levels provides students with 

additional cues—though it is important to keep this language simple and precise, because an excess 

of technical language can overwhelm rather than clarify [1], [14]. (For example, Armoni uses the 

term “verbal description” instead of “algorithm” with middle-school students [12].) This is a 

context where anchor charts can come in handy: a visual diagram of the levels of abstraction, with 

vocabulary and strategies associated with each, can give students another format to understand the 

concept and act as a visual cue to actively consider what level they’re working on. 

Because students have a “tendency to reduce the level of abstraction,” it is important to 

start at the highest level of abstraction [12]. Computer science instruction commonly takes place 

directly in a programming environment (levels 1-2), but starting at the problem and algorithm 

levels (levels 4 and 3, respectively) helps ensure that students understand the problem more fully 

before they tackle the details of coding, thus emphasizing the importance of big-picture thinking 

[14]. Furthermore, returning to the algorithm and problem levels during implementation helps 

students practice switching between levels of abstraction in ways that serve the problem-solving 

process [12], [14]. For example, if the code runs without error but doesn’t produce the expected 

output (level 1), returning to the problem level (level 4) can reveal a misinterpretation of the 

original question, or returning to the algorithm level (level 3) can reveal a faulty chain of logic. 
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Making these sorts of practices explicit and regularly modeling them for students helps ensure that 

students with learning differences have a chance to recognize, understand, and internalize them. 

Abstraction is “a habit of mind” [12], and as with any new habit, repetition and consistency are 

key. 

Again here, it’s important to avoid the pitfall of over-structuring or over-supporting 

students: while explicit instruction and modeling are proven instructional strategies, they should 

be balanced with time for open inquiry, exploration, applications, and productive struggle. 

Reflection is a way to reinforce learning and help students understand key takeaways, and 

also offers instructors a chance to gauge whether students are mastering the material. Armoni’s 

framework for teaching abstraction recommends ending a computer science course with a 

reflection of the “major CS principles and methods” covered in the course [12]; explicit instruction 

and UDL principles suggest more frequent “comprehension checkpoints” to ensure that students 

recognize the key points of a lesson or unit [1]. These could take the form of full-class discussions 

or formative assessments, either formal or informal. The instructor then has the opportunity to 

address challenge points with additional instruction [1], [2]. 

 

5. Conclusion 

This strategic application of instructional approaches to support students with learning 

differences in specific cognitive tasks is not novel. For example, Wille et al. developed a set of 

“guidelines” listing “specific learning and attention deficit disorders and the underlying 

psychological processes typically associated with them […] that serve as the starting point for 

adjustments specific to CS instruction and curriculum” [7]. However, this methodical approach is 

unusual in the research on both CS education in general and CS education for students with 
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learning differences specifically. While some researchers use an iterative curriculum design 

process to respond to students’ difficulties with the material (e.g., [2]), the common approach 

seems to focus on specific learning or coding platforms or specific curricula. I believe that a 

methodical, proactive, and responsive curricular design offers students with learning differences 

the best chance of success—and offers teachers the best chance of avoiding frustration and wasted 

time. However, empirical research would be required to evaluate the validity of this approach. 

The greatest need in research on computing education with students with disabilities is 

large-scale empirical research comparing different pedagogical strategies. While Armoni’s 

framework for teaching abstraction has shown incredibly promising results in an initial study [14], 

there are no studies examining its efficacy for students with learning differences. In addition, many 

of the instructional strategies recommended in section 4 have not been empirically studied in the 

context of computing instruction. Even though many are known to be effective for supporting 

students with learning differences in other academic contexts (e.g., see [1], [2], [9]), additional 

research is needed to determine whether they are similarly effective in supporting computational 

thinking, as well as to determine whether certain strategies produce better outcomes than others. 
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Appendix A 

Summary of Instructional Strategies 

Memory supports (short-term memory, long-term storage and retrieval) 

• Vocabulary: define new terms, review terms, maintain a class glossary, use terms 

frequently and consistently 

• List or highlight key points during instruction 

• Maintain a reference sheet of code/syntax 

• Have students keep a list of variables and functions when coding 

• Use anchor charts for important facts, procedures, etc. 

• Review and re-teach as needed 

 

Communication supports (crystallized intelligence, reading/writing) 

• UDL: provide information in multiple formats, give students multiple means of expression 

• Class notes/handouts with key points 

• Frameworks for interpreting incoming info, scripts for communicating with others 

o How to make sense of an error message 

o How to ask for help 

• Providing prompts and cues if students are struggling to express themselves 

 

Processing (processing speed, decision/reaction time) & executive function supports 

• Allow more time for processing and responses (offer bonus exercises or free exploration 

time to those who work quickly) 

• Monitor student progress, build checkpoints into activities 
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• Physical manipulatives and kinesthetic activities 

• Allow students to take breaks 

• Offer a quiet area to work or take breaks 

• Scaffold difficult tasks 

o Examples, templates, or outlines for the planning/organizing stage 

o Ideas for topics if students get stuck 

o Make sense of the problem and write an algorithm/outline before beginning to code 

o Questions to guide the debugging process 

o A set of options to try when something isn’t working 

• Maintain a balance with open inquiry: don’t over-support, allow productive struggle, ask 

guiding questions 

 

Fluid intelligence supports 

• Explicit instruction 

o Prioritize big ideas, set clear goals and expectations 

o Review prior learning 

o Use modeling and step-by-step demos 

o Monitor student performance and provide immediate corrective feedback 

• Modeling with UDL: demos with notes and sample code, video tutorials, exploring or 

modifying sample code, “unplugged” demonstrations 

• Connect decomposition to task analysis 

• Use flowcharts for algorithm design 

• Levels of abstraction 
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o Be clear and explicit 

o Use language to differentiate 

o Anchor chart diagram of different levels 

o Emphasize higher levels of abstraction 

o Be consistent 

• Reflection: comprehension checkpoints, class discussion, formative assessments 
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Appendix B 

Sample Lesson Plan 

Context  

“Thinking Like a Computer Scientist,” a computing summer camp program for novice computer 

science students ages 10-14. The camp will run six hours a day (three in the morning, then three 

more in the afternoon after an hourlong lunch break) for five days. 

 

Schedule Outline 

Monday morning: Intro to CS and CT; Making sense of a problem; 20 Questions activity 

Monday afternoon: Algorithms & flowcharts; PB sandwich class activity; Battleship group activity 

 

Sample Activities: Monday afternoon, “Peanut butter sandwich” and “How to win at 

Battleship” 

• Objectives: (1) Practice writing detailed steps for a solution; (2) understand how to use 

flowcharts to outline an algorithm 

• Materials: Flipchart and flipchart markers, whiteboards and whiteboard markers, scratch 

paper and writing utensils; sandwich bread, jar of peanut butter*, plate, butter knife, 

placemat or butcher paper, and paper towels; Battleship game set 

• Overview: This lesson has two main parts. First, the instructor will lead the class in a 

problem-solving activity: writing instructions for making a peanut butter sandwich. The 

instructor will start on level 4 to make sure students understand the problem before moving 

to level 3 to outline a solution. As students brainstorm, the instructor will use guiding 

                                                        
*Or almond, sunflower seed, or other butter in the case of a peanut allergy—make sure this is sorted out in advance. 
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questions to help them develop a workable solution. The instructor will use a flowchart to 

outline the students’ solution on a flipchart as it comes together, explaining what each 

structure of the flowchart means. Once the solution is complete, the instructor will ask the 

students to explain the solution, ensuring that they understand both the solution and the 

flowchart structure. Finally, the instructor or TA will physically act out the algorithm, 

mistakes and all! For the second part, the instructor will divide the students into pairs or 

groups (depending on class size and demeanors) and give them a new problem to solve: 

writing detailed instructions on how to win at Battleship. Each group will have a large 

stretch of whiteboard as well as scratch paper to brainstorm on. The assignment is to 

rephrase the problem and list important considerations, then create a flowchart describing 

the solution to the problem. At the end, students will share their solutions and give each 

other feedback on the clarity, functionality, and completeness of their algorithms. 

• Challenge points & instructional strategies:  

o Many students have not seen or used flowcharts before. This might pose a problem 

for students with processing (especially visual processing) impairments, students 

with mild intellectual disability, students with symbolic or spatial learning 

disorders, and others. To address possible confusion, the flowchart will be 

introduced in the context of solving a problem (modeling), with the solution written 

out as numbered steps beside the flowchart (multiple formats of presentation), and 

the instructor will describe and explain what they are doing as they draw the 

flowchart (explicit instruction). Asking the students to explain the solution acts as 

a comprehension checkpoint, both giving the instructor a chance to see how well 
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they understand and giving students a chance to review the concepts and rephrase 

them. 

o Students with language/communication or processing difficulty may struggle to 

participate in the full-class problem-solving activity. The problem will be presented 

aloud, written on the board, and provided on a paper handout (multiple forms of 

presentation). During discussion, the instructor will intentionally leave some 

processing time between asking a question and taking responses, and will call on 

different students to make suggestions. If a TA is available for the class, they could 

take digital notes during the discussion as a record and additional format for 

students to absorb the information. In addition, during the group work all groups 

will work on the same activity, so that students don’t need to rapidly make sense of 

a new problem during the final discussion. 

o Some students may not have encountered the game Battleship before, or may not 

remember exactly how it works. There will be a physical copy of the game for 

students to look at and refer to during the Battleship activity (multiple formats of 

information; manipulatives), and if students who aren’t familiar with the game are 

having trouble making sense of it, the instructor or TA can lead a game to 

demonstrate how it works (modeling). 

o Students with communication impairments might have trouble with the 

collaborative structure. The instructor will try to choose pairs/groups of students 

with similar temperaments to keep quieter or slower-processing students from 
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being overwhelmed by louder or more exuberant classmates*. In addition, 

information from the morning will be provided on handouts, including scripts to 

guide communication and problem-solving. 

o Students with executive dysfunction may find the open-ended structure of the 

second activity challenging. The instructor will supervise the students during this 

stage, and if a student or group seems stuck, the instructor will ask guiding 

questions, provide prompts, and direct the students towards available resources 

(scaffolding). In addition, if a student seems to be getting frustrated, the instructor 

will check in with them and either provide additional guidance or encourage a break 

if it seems warranted. 

o Students with memory impairments might have trouble remembering the material 

from the morning; paper and digital handouts and flipchart notes from the morning 

activity will help serve as reminders. Students who are having trouble keeping track 

of all the parts of the problem will be encouraged to take notes in whatever form 

works for them, with some possible notetaking formats suggested for students who 

don’t have a preferred strategy. 

  

                                                        
*The question of similar-ability versus mixed-ability grouping is a controversial one, and beyond the scope of this 
paper. For this early stage of the camp, placing students with similar classmates is intended to prevent overwhelm 
and foster equal participation. 
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